lunes, 30 de agosto de 2010

DISPOSITIVOS ENTRADA/SALIDA


Unidad central de procesamiento
La unidad central de procesamiento o CPU (por el acrónimo en inglés de central processing unit), o simplemente el procesador o microprocesador, es el componente del computador y otros dispositivos programables, que interpreta las instrucciones contenidas en los programas y procesa los datos. Los CPU proporcionan la característica fundamental de la computadora digital (la programabilidad) y son uno de los componentes necesarios encontrados en las computadoras de cualquier tiempo, junto con el almacenamiento primario y los dispositivos de entrada/salida. Se conoce como microprocesador el CPU que es manufacturado con circuitos integrados. Desde mediados de los años 1970, los microprocesadores de un solo chip han reemplazado casi totalmente todos los tipos de CPU, y hoy en día, el término "CPU" es aplicado usualmente a todos los microprocesadores.

La expresión "unidad central de proceso" es, en términos generales, una descripción de una cierta clase de máquinas de lógica que pueden ejecutar complejos programas de computadora. Esta amplia definición puede fácilmente ser aplicada a muchos de los primeros computadores que existieron mucho antes que el término "CPU" estuviera en amplio uso. Sin embargo, el término en sí mismo y su acrónimo han estado en uso en la industria de la informática por lo menos desde el principio de los años 1960 . La forma, el diseño y la implementación de los CPU ha cambiado drásticamente desde los primeros ejemplos, pero su operación fundamental ha permanecido bastante similar.
Los primeros CPU fueron diseñados a la medida como parte de una computadora más grande, generalmente una computadora única en su especie. Sin embargo, este costoso método de diseñar los CPU a la medida, para una aplicación particular, ha desaparecido en gran parte y se ha sustituido por el desarrollo de clases de procesadores baratos y estandarizados adaptados para uno o muchos propósitos. Esta tendencia de estandarización comenzó generalmente en la era de los transistores discretos, computadoras centrales, y microcomputadoras, y fue acelerada rápidamente con la popularización del circuito integrado (IC), éste ha permitido que sean diseñados y fabricados CPU más complejos en espacios pequeños (en la orden de milímetros). Tanto la miniaturización como la estandarización de los CPU han aumentado la presencia de estos dispositivos digitales en la vida moderna mucho más allá de las aplicaciones limitadas de máquinas de computación dedicadas. Los microprocesadores modernos aparecen en todo, desde automóviles, televisores, neveras, calculadoras, aviones, hasta teléfonos móviles o celulares, juguetes, entre otros.

MAINBOARD
Una tarjeta madre es la central o primaria tarjeta de circuito de un sistemade computo u otro sistema electrónico complejo. Una computadora típica con el microprocesador, memoriaprincipal, y otros componentes básicos de la tarjeta madre. Otros componentes de la computadora tal como almacenamiento externo, circuitos de control para video y sonido, y dispositivos periféricosson unidos a la tarjeta madre vía conectores o cables de alguna clase.

La tarjeta madre es el componente principal de un computador personal. Es el componente que integra a todos los demás. Escoger la correcta puede ser difícil ya que existen miles. Estos son los elementos que se deben considerar:

                                                           MEMORIAS
RAM-ROM
La memoria ROM, (read-only memory) o memoria de sólo lectura, es la memoria que se utiliza para almacenar los programas que ponen en marcha el ordenador y realizan los diagnósticos. La memoria ROM es aquella memoria de almacenamiento que permite sólo la lectura de la información y no su destrucción, independientemente de la presencia o no de una fuente de energía que la alimente.

La memoria de sólo lectura o ROM (acrónimo en inglés de read-only memory) es una clase de medio de almacenamiento utilizado en ordenadores y otros dispositivos electrónicos. Los datos almacenados en la ROM no se pueden modificar -al menos no de manera rápida o fácil- y se utiliza principalmente para contener el firmware (programa que está estrechamente ligado a hardware específico, y es poco probable que requiera actualizaciones frecuentes) u otro contenido vital para el funcionamiento del dispositivo.
En su sentido más estricto, se refiere sólo a máscara ROM -en inglés MROM- (el más antiguo tipo de estado sólido ROM), que se fabrica con los datos almacenados de forma permanente, y por lo tanto, su contenido no puede ser modificado. Sin embargo, las ROM más modernas, como EPROM y Flash EEPROM se pueden borrar y volver a programar varias veces, aún siendo descritos como "memoria de sólo lectura (ROM), porque el proceso de reprogramación en general es poco frecuente, relativamente lento y, a menudo, no se permite la escritura en lugares aleatorios de la memoria. A pesar de la simplicidad de la ROM, los dispositivos reprogramables son más flexibles y económicos, por dicha razón, las máscaras ROM no se suelen encontrar en hardware producido a partir de 2007.

La frase memoria RAM se utiliza frecuentemente para referirse a los módulos de memoria que se usan en los computadores personales y servidores. En el sentido estricto, los modulos de memoria contienen un tipo, entre varios de memoria de acceso aleatorio, ya que las ROM, memorias Flash, caché (SRAM), los registros en procesadores y otras unidades de procesamiento también poseen la cualidad de presentar retardos de acceso iguales para cualquier posición. Los módulos de RAM son la presentación comercial de este tipo de memoria, que se compone de circuitos integrados soldados sobre un circuito impreso, en otros dispositivos como las consolas de videojuegos, esa misma memoria va soldada sobre la placa principal.

MEMORIA CACHE
En informática, una caché es un conjunto de datos duplicados de otros originales, con la propiedad de que los datos originales son costosos de acceder, normalmente en tiempo, respecto a la copia en la caché. Cuando se accede por primera vez a un dato, se hace una copia en el caché; los accesos siguientes se realizan a dicha copia, haciendo que el tiempo de acceso medio al dato sea menor. 

FUENTE ALIMENTACION
Fuente de alimentación para PC (sin cubierta superior, para mostrar su interior).
Fuentes de alimentación externas.En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.).

Fuentes de alimentación lineales

Las fuentes lineales siguen el esquema: transformador, rectificador, filtro, regulación y salida.
En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en continua se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación, o estabilización de la tensión a un valor establecido, se consigue con un componente denominado regulador de tensión. La salida puede ser simplemente un condensador.

Fuentes de alimentación conmutadas

Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 Kilociclos típicamente) entre corte (abiertos) y saturación (cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos) y filtrados (Inductores y capacitores) para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia y por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son mas complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.
Las fuentes conmutadas tienen por esquema: rectificador, conmutador, transformador, otro rectificador y salida.
La regulación se obtiene con el conmutador, normalmente un circuito PWM (Pulse Width Modulation) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales pero su posición es diferente. El segundo rectificador convierte la señal alterna pulsante que llega del transformador en un valor continuo. La salida puede ser también un filtro de condensador o uno del tipo LC.
Las ventajas de las fuentes lineales son una mejor regulación, velocidad y mejores características EMC. Por otra parte las conmutadas obtienen un mejor rendimiento, menor coste y tamaño.

 
BUSES
En arquitectura de computadores, el bus es un sistema digital que transfiere datos entre los componentes de un ordenador o entre ordenadores. Está formado por cables o pistas en un circuito impreso, dispositivos como resistencias y condensadores además de circuitos integrados.

En los primeros computadores electrónicos, todos los buses eran de tipo paralelo, de manera que la comunicación entre las partes del computador se hacía por medio de cintas o muchas pistas en el circuito impreso, en los cuales cada conductor tiene una función fija y la conexión es sencilla requiriendo únicamente puertos de entrada y de salida para cada dispositivo.
La tendencia en los últimos años es el uso de buses seriales como el USB, Custom Firewire para comunicaciones con periféricos y el reemplazo de buses paralelos para conectar toda clase de dispositivos, incluyendo el microprocesador con el chipset en la propia placa base. Son conexiones con lógica compleja que requieren en algunos casos gran poder de cómputo en los propios dispositivos, pero que poseen grandes ventajas frente al bus paralelo que es menos inteligente.
Existen diversas especificaciones de bus que definen un conjunto de características mecánicas como conectores, cables y tarjetas, además de protocolos eléctricos y de señales.

CONECTORES PC

La costumbre hace que cuando contestamos alguna pregunta relacionada con un PC digamos que compruebe tal o cual cable o que mire este o aquel conector, pero pocas veces nos paramos a pensar si la persona a la que estamos respondiendo conoce esos cables, cuales son, como son físicamente y para qué sirven.
Vamos a intentar en este tutorial darles un repaso a los principales, ordenándolos en lo posible por su uso.
Cables de datos:
Los principales cables (también llamados a veces fajas) utilizados para la transmisión de datos son:
Faja FDD o de disquetera:
Imágenes de dos tipos diferentes de cables FDD, uno plano y otro redondo.
Es el cable o faja que conecta la disquetera con la placa base.
Se trata de un cable de 34 hilos con dos o tres terminales de 34 pines. Uno de estos terminales se encuentra en un extremo, próximo a un cruce en los hilos. Este es el conector que va a la disquetera asignada como unidad A.
En el caso de tener tres conectores, el del centro sería para conectar una segunda disquetera asignada como unidad B.
El hilo 1 de suele marcar de un color diferente, debiendo este coincidir con el pin 1 del conector.



Faja IDE de 40 hilos:

Imagen de una faja IDE de 40 hilos.
Las fajas de 40 hilos son también llamadas Faja ATA 33/66, en referencia a la velocidad de transferencia que pueden soportar.
La longitud máxima no debe exceder los 46cm.
Al igual que en las fajas FDD, el hilo 1 se marca en color diferente, debiendo este coincidir con el pin 1 del conector.
Este tipo de faja no sirve para los discos IDE modernos, de 100Mbps o de 133Mbps, pero si se pueden utilizar tanto el lectoras como en regrabadoras de CD / DVD.


Faja IDE de 80 hilos:

Imágenes de dos tipos diferentes de cables IDE 80, uno plano y otro redondo.
Los cables IDE80, también llamados Faja ATA 100/133, son los utilizados para conectar dispositivos ATA - PATA a los puertos IDE de la placa base.
Son fajas de 80 hilos, pero con terminales de 40 contactos.
Esto se debe a que llevan 40 hilos de datos o tensión y 40 hilos de masa. Estos últimos tienen la finalidad de evitar interferencias entre los hilos de datos, por lo que permiten una mayor velocidad de transmisión.
A diferencia de las fajas de 40 hilos, en las que es indiferente el orden de conexión maestro / esclavo, en las fajas de 80 hilos estas deben estar en un orden establecido, estando este orden determinado por el color de los conectores, que suele ser:
Azul.- En un extremo, al IDE de la placa base.
Gris.- En el centro, al dispositivo esclavo.
Negro.- En el otro extremo, al dispositivo Master.
Estas fajas se pueden utilizar también sin problemas para conectar lectoras y regrabadoras de CD / DVD o en discos duros ATA 33 o ATA 66.
Al igual que en las fajas IDE 40, el hilo 1 se marca en color diferente, debiendo este coincidir con el pin 1 del conector.
Cable SATA:

En estas imágenes podemos ver un cable SATA y, en la de la derecha, los conectores en detalle.
Las unidades SATA (discos duros, regrabadoras de DVD...) utilizan un tipo específico de cable de datos.
Estos cables de datos están más protegidos que las fajas IDE y tienen bastantes menos contactos.
En concreto, se trata de conectores de 7 contactos, formados por dos pares apantallados y con una impedancia de 100 Ohmios y tres cables de masa (GND).
Los cables de masa corresponden a los contactos 1, 4 y 7, el par 2 y 3 corresponde a transmisión + y transmisión - y el par 5 y 6 a recepción - y recepción +.
Este tipo de cables soporta unas velocidades muchísimo más altas que los IDE (actualmente hasta 3Gbps en los SATA2), así como unas longitudes bastante mayores (de hasta 2 metros). Las conexiones SATA son conexiones punto a punto, por lo que necesitamos un cable por cada dispositivo.

Faja SCSI:

Cable o Faja SCSI III.
Este tipo de cable conecta varios dispositivos y los hay de diferentes tipos, dependiendo del tipo de SCSI que vayan a conectar.
SCSI-1.- Conector de 50 pines, 8 dispositivos max. y 6 metros max.
SCSI-2.- Conector de 50 pines, 8 dispositivos max. y 3 metros max.
SCSI-3 Ultra.- Conector de 50 pines, 8 dispositivos max. y 3 metros max.
SCSI-3 Ultra Wide.- Conector de 68 pines, 15 dispositivos max. y 1.5 metros max.
SCSI-3 Ultra 2.- Conector de 68 pines, 15 dispositivos max. y 12 metros max.
 

CABLES USB
Izquierda, cable USB. A la derecha, conectores tipo A y B.
Los cables USB son cada vez más utilizados en conexiones exteriores.
Se trata de cables de 4 contactos, distribuidos de la siguiente forma:
Contacto 1.- Tensión 5 voltios.
Contacto 2.- Datos -.
Contacto 3.- Datos +.
Contacto 4.- Masa (GND).
Dado que también transmiten tensión a los periféricos, es muy importante, sobre todo en las conexiones internas (a placa base mediante pines) seguir fielmente las indicaciones de conexión suministradas por el fabricante de la placa base, ya que un USB mal conectado puede causar graves averías, tanto en el periférico conectado como en la propia placa base.
Las conexiones USB soportan una distancia máxima de 5 metros, aunque con dispositivos amplificadores se puede superar esta distancia.
Los conectores estandarizados son el tipo A, utilizado sobre todo en las placas base y en los dispositivos tipo Hub, y el tipo B, utilizado en periféricos (impresoras, escáneres, discos externos...).
Existe otro conector estandarizado (hasta cierto punto), denominado Mini USB, que podemos ver en la imagen superior, utilizado por dispositivos USB de pequeño tamaño a multimedia (MP3, cámaras fotográficas y de vídeo, etc.).
Los conectores USB admiten hasta un máximo de 127 dispositivos.
Además de estos (que son los más habituales), no existe una reglamentación en cuanto a la estandarización de la forma y tamaño de este tipo de conectores, por lo que hay en el mercado cientos de tipos diferentes de conectores (sobre todo del tipo Mini), que en ocasiones solo sirven para una marca y modelo determinado.




CONDENSADOR
En electricidad y electrónica, un condensador (capacitor en inglés) es un dispositivo que almacena energía eléctrica, es un componente pasivo. Está formado por un par de superficies conductoras en situación de influencia total (esto es, que todas las líneas de campo eléctrico que parten de una van a parar a la otra), generalmente en forma de tablas, esferas o láminas, separadas por un material dieléctrico (siendo este utilizado en un condensador para disminuir el campo eléctrico, ya que actúa como aislante) o por el vacío, que, sometidos a una diferencia de potencial (d.d.p.) adquieren una determinada carga eléctrica, positiva en una de las placas y negativa en la otra (siendo nula la carga total almacenada).

La carga almacenada en una de las placas es proporcional a la diferencia de potencial entre esta placa y la otra, siendo la constante de proporcionalidad la llamada capacidad o capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo 1 faradio la capacidad de un condensador en el que, sometidas sus armaduras a una d.d.p. de 1 voltio, éstas adquieren una carga eléctrica de 1 culombio.
La capacidad de 1 faradio es mucho más grande que la de la mayoría de los condensadores, por lo que en la práctica se suele indicar la capacidad en micro- µF = 10-6, nano- nF = 10-9 o pico- pF = 10-12 -faradios. Los condensadores obtenidos a partir de supercondensadores (EDLC) son la excepción. Están hechos de carbón activado para conseguir una gran área relativa y tienen una separación molecular entre las "placas". Así se consiguen capacidades del orden de cientos o miles de faradios. Uno de estos condensadores se incorpora en el reloj Kinetic de Seiko, con una capacidad de 1/3 de Faradio, haciendo innecesaria la pila. También se está utilizando en los prototipos de automóviles eléctricos.

BOBINA
Un inductor o bobina es un componente pasivo de un circuito eléctrico que, debido al fenómeno de la autoinducción, almacena energía en forma de campo magnético.

RESISTENCIA
La resistencia eléctrica de un objeto es una medida de su oposición al paso de una corriente.

Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.
Para una gran cantidad de materiales y condiciones, la resistencia eléctrica no depende de la corriente eléctrica que pasa a través de un objeto o de la tensión en los terminales de este. Esto significa que, dada una temperatura y un material, la resistencia es un valor que se mantendrá constante. Además, de acuerdo con la ley de Ohm la resistencia de un objeto puede definirse como la razón de la tensión y la corriente, así :
Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductores, aislantes y semiconductores. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.

LED
Un diodo emisor de luz, también conocido como LED (acrónimo del inglés de light-emitting diode) es un dispositivo semiconductor (diodo) que emite luz incoherente de espectro reducido cuando se polariza de forma directa la unión PN del mismo y circula por él una corriente eléctrica. Este fenómeno es una forma de electroluminiscencia. El color, depende del material semiconductor empleado en la construcción del diodo y puede variar desde el ultravioleta, pasando por el visible, hasta el infrarrojo. Los diodos emisores de luz que emiten luz ultravioleta también reciben el nombre de UV LED (ultraviolet light-emitting diode) y los que emiten luz infrarroja se llaman IRED (infrared emitting diode).


ZOCALO
El zócalo (socket en inglés) es un sistema electromecánico de soporte y conexión eléctrica, instalado en la placa base, que se usa para fijar y conectar un microprocesador. Se utiliza en equipos de arquitectura abierta, donde se busca que haya variedad de componentes permitiendo el cambio de la tarjeta o el integrado. En los equipos de arquitectura propietaria, los integrados se sueldan sobre la placa base, como sucede en las consolas de videojuegos.

Existen variantes desde 40 conexiones para integrados pequeños, hasta más de 1300 para microprocesadores, los mecanismos de retención del integrado y de conexión dependen de cada tipo de zócalo, aunque en la actualidad predomina el uso de zócalo ZIF (pines) o LGA (contactos).

PILA
La pila del ordenador, o más correctamente el acumulador, se encarga de conservar los parámetros de la BIOS cuando el ordenador está apagado. Sin ella, cada vez que encendiéramos tendríamos que introducir las características del disco duro, del chipset, la fecha y la hora...

Se trata de un acumulador, pues se recarga cuando el ordenador está encendido. Sin embargo, con el paso de los años pierde poco a poco esta capacidad (como todas las baterías recargables) y llega un momento en que hay que cambiarla. Esto, que ocurre entre 2 y 6 años después de la compra del ordenador, puede vaticinarse observando si la hora del ordenador "se retrasa" más de lo normal.
Para cambiarla, apunte todos los parámetros de la BIOS para reescribirlos luego, saque la pila (usualmente del tipo de botón grande o bien cilíndrica como la de la imagen), llévela a una tienda de electrónica y pida una exactamente igual. O bien lea el manual de la placa base para ver si tiene unos conectores para enchufar pilas externas; si es así, apunte de qué modelo se trata y cómprelas

DISIPADOR
Un disipador es un elemento físico, sin partes móviles, destinado a eliminar el exceso de calor de cualquier elemento.
Su funcionamiento se basa en la segunda ley de la termodinámica, transfiriendo el calor de la parte caliente que se desea disipar al aire. Este proceso se propicia aumentando la superficie de contacto con el aire permitiendo una eliminación más rápida del calor excedente.






PUERTOS
En la informática, un puerto es una forma genérica de denominar a una interfaz a través de la cual los diferentes tipos de datos se pueden enviar y recibir. Dicha interfaz puede ser de tipo físico, o puede ser a nivel de software (por ejemplo, los puertos que permiten la transmisión de datos entre diferentes ordenadores) (ver más abajo para más detalles), en cuyo caso se usa frecuentemente el término puerto lógico
MODEM
Un módem es un dispositivo que sirve para enviar una señal llamada moduladora mediante otra señal llamada portadora. Se han usado módems desde los años 60, principalmente debido a que la transmisión directa de las señales electrónicas inteligibles, a largas distancias, no es eficiente, por ejemplo, para transmitir señales de audio por el aire, se requerirían antenas de gran tamaño (del orden de cientos de metros) para su correcta recepción. Es habitual encontrar en muchos módems de red conmutada la facilidad de respuesta y marcación automática, que les permiten conectarse cuando reciben una llamada de la RTPC (Red Telefónica Pública Conmutada) y proceder a la marcación de cualquier número previamente grabado por el usuario. Gracias a estas funciones se pueden realizar automáticamente todas las operaciones de establecimiento de la comunicación.

RANURA DE EXPANSIÓN
Las tarjetas de expansión son dispositivos con diversos circuitos integrados y controladores que, insertadas en sus correspondientes ranuras de expansión, sirven para ampliar las capacidades de un ordenador. Las tarjetas de expansión más comunes sirven para añadir memoria, controladoras de unidad de disco, controladoras de vídeo, puertos serie o paralelo y dispositivos de módem internos. Por lo general, se suelen utilizar indistintamente los términos «placa» y «tarjeta» para referirse a todas las tarjetas de expansión.

En la actualidad las tarjetas suelen ser de tipo PCI, PCI Express o AGP. Como ejemplo de tarjetas que ya no se utilizan tenemos la de tipo Bus ISA.
Gracias al avance en la tecnología USB y a la integración de audio, video o red en la placa base, hoy en día son menos imprescindibles para tener un PC completamente funcional.





No hay comentarios: